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Ion-trap analog of particle creation in cosmology
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We consider the transversal modes of ions in a linear radio-frequency trap where we control the time-
dependent axial confinement to show that we can excite quanta of motion via a two-mode squeezing process. This
effect is analogous to phenomena predicted to occur in the early universe, in general out of reach for experimental
investigation. As a substantial advantage of this proposal in comparison to previous ones we propose to exploit
the radial and axial modes simultaneously to permit experimental access of these effects based on state-of-the-art
technology. In addition, we propose to create and explore entanglement between the two ions.
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I. INTRODUCTION

It is a fundamental prediction of quantum field theory that
extreme conditions, such as nonadiabatic dynamics, can create
pairs of particles out of the quantum vacuum. A prominent
example is cosmological particle creation [1–3]. To provide
an intuitive picture of such an effect, let us imagine two
pendula coupled by a spring. The classical ground states with
and without spring remain identical, however, the ground
states of the quantum version differ in a fundamental way.
Without the spring, we describe the system by a product of
the individual ground states, while the two coupled pendula
require entanglement of the nonseparable state (see also [4]).
Now, if we remove the spring instantaneously such that the
system has no time to react, we end up with two pendula
which are not in their individual ground states, i.e., excited
(see Fig. 1). The entanglement of the state corresponds to
the correlation between the two pendula, e.g., if pendulum 1
was in the first excited state, then pendulum 2 has to match
the excitation—while the total state of the system remains a
pure state. This entanglement also implies that if we consider
pendulum 1 only, by tracing over the degrees of freedom
of pendulum 2, the effective state of pendulum 1 will be
indistinguishable from a thermal (i.e., mixed) state.

In quantum field theory, this instantaneous or nonadiabatic
removal of the spring is predicted to be caused by extreme
circumstances, such as during the inflationary part of the
expansion of the universe when wave packets get torn apart.
This tearing-apart of waves is also the main mechanism re-
sponsible for Hawking radiation, i.e., black-hole evaporation
[5,6]. Although Hawking radiation is created in a stationary
background, following the time evolution of a wave packet at
the horizon, we also see that it is torn apart—one part (pendu-
lum) falling into the black hole and the other part escaping as
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Hawking radiation. In this case, the entanglement between the
two “pendula” (one inside and the other outside the horizon)
explains the thermal character of Hawking radiation. Here, we
propose an experimentally realizable analog of this tearing-
apart effect based on trapped ions. The radial modes of the
two or more ions represent the two quantum pendula, while
the spring is analogous to their Coulomb interaction within
the axial trapping potential. We define the amplitude and
the evolution in time of the latter by applying potentials to
additional electrodes, controlling the axial motion of the ions
and their mutual distance, respectively. Due to the unique
control and accurate detection of the electronic and motional
degrees of freedom, trapped ions are very good candidates for
investigating these quantum effects; see also [7].

It might be illuminating to place our proposal into a broader
context. Broadly speaking, it is an example of a quantum
simulation or quantum simulator; see, e.g., [8–10]. More
specifically, it can be regarded as belonging to the topic of
analog gravity, which exploits analogies between gravitational
phenomena (such as cosmological particle creation) and labo-
ratory systems; see, e.g., [11–14]. For example, the analog of
cosmological particle creation in Bose-Einstein condensates
(see also [15] and [16]) has been discussed; see, e.g., [17] and
[18]. In order to mention recent experimental progress, the
measurement of the correlations emitted by an analog black-
hole horizon in a Bose-Einstein condensate has been reported
in [19]. The creation of correlated excitations in a setup which
is more analogous to cosmological particle creation has been
observed in [20].

In comparison to Bose-Einstein condensates, for example,
trapped ions offer certain advantages. For ion traps, it is
possible to detect Fock states down to the single-phonon
level as well as squeezed states via quantum beating curves
[21]. It is even possible to read out the motional quantum
state via state tomography [22]. The obvious drawback is the
limited number of ions. Further examples of the simulation of
relativistic effects in ion traps can be found in [23–25].
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FIG. 1. Pictorial representation of the main mechanism. (a) Two
uncoupled pendula have independent ground states. (b) For two
pendula coupled by a string, the ground state is an entangled state. (c)
After removing the coupling suddenly, the entangled state remains
such that each pendulum separately is in an excited state. (b) repre-
sents the initial quantum vacuum state. The sudden removal of the
spring then corresponds to the tearing-apart of waves (e.g., due to
the cosmic expansion), which then leads to the creation of entangled
pairs of particles.

II. EXCITATION OF PHONONS

We investigate a system of N ions of the identical species
in a harmonic trapping potential characterized by a constant
radial secular frequency ω2

rad, provided by time-averaging the
radio-frequency potential. In the axial direction, we specify
the time-dependent confinement by ω2

ax(t ). This system is a
generalization of the one-dimensional approach treated in [7],
where only the motion along the axial direction has been
investigated. A sketch of the setup for N = 2 is depicted in
Fig. 2. Here we assume that the radial confinement is always
stronger than the axial one, i.e., ω2

rad > ω2
ax(t ). The classical

equation of motion of the kth ion with coordinate rk then reads

r̈k +

⎛
⎜⎝

ω2
ax(t ) 0 0

0 ω2
rad 0

0 0 ω2
rad

⎞
⎟⎠ · rk = γ

N∑
l �=k

rk − rl

|rk − rl|3 , (1)

where the constant γ encodes the strength of the Coulomb
repulsion between the ions. In the following, we focus on
those solutions of (1) which start at t = tin in the equilibrium
positions rk (tin) := req

k := (xeq
k , 0, 0)T when the trap is static

initially. These solutions can be written as rk (t ) = b(t )req
k ,

FIG. 2. Two ions with coordinates r1 and r2 in the potential en-
ergy landscape of a nonisotropic harmonic trap with time-dependent
axial trap frequency ωax(t ) and radial frequency ωrad. The z direction
is not shown. Classical motion along the axial x direction can amplify
quantum fluctuations in the rocking mode δŷ− along the y direction.

where the scale parameter b(t ) fulfills

b̈(t ) + ω2
ax(t )b(t ) =

(
ωin

ax

)2

b2(t )
, (2)

with ωin
ax =ωax(tin). The boundary conditions are b(tin)=1

and ḃ(tin) = 0. This means that the classical solution is fully
determined as a time-dependent rescaling of the initial equi-
librium positions (see, e.g., [26]).

However, the ions are quantum particles described by a
wave function of a certain width, individual measurements
of their positions have to deviate from and fluctuate around
their classically predictable positions, revealing quantum fluc-
tuations. Their position operator can be written as r̂k (t ) =
b(t )req

k + δr̂k , and in a semiclassical approximation, we as-
sume that the deviations δr̂k remain small (because the mass
of the ions is large, corresponding to a narrow width of their
ground-state wave function).

Linearization and diagonalization of (1) then yields
the Heisenberg equation of motion for the normal modes
(phonons). While the axial phonons have been discussed in
[7] we focus here on the radial phonons satisfying(

d2

dt2
+ �2

κ (t )

)
δŷκ = 0. (3)

Every radial normal mode δŷκ can be associated with one
individual harmonic oscillator with time-dependent normal-
mode frequency

�2
κ (t ) = ω2

rad − ω2
κ

b3(t )
, (4)

where ω2
κ � 0 is the κth eigenvalue of the matrix

Mkl = δkl

N∑
j �=k

γ∣∣xeq
k − x

eq
j

∣∣3 − γ (1 − δkl )∣∣xeq
k − x

eq
l

∣∣3 . (5)

Especially, for the center-of-mass mode we have ω0 = 0 and
for the rocking mode ω1 = ωin

ax.
In the following we show how the time dependence of

the normal-mode frequencies �κ (t ) can lead to the excitation
of phonons. At the initial instant tin we express the position
operator of each normal mode in terms of the harmonic
oscillator ladder operators as (h̄ = 1)

δŷκ (tin) = 1√
2�κ (tin)

âin
κ + H.c. (6)

For another given instant tout > tin, the operator evolves under
the Heisenberg equation, (3), into

δŷκ (tout) = 1√
2�κ (tout)

âout
κ + H.c., (7)

where the final creation and annihilation operators â†out
κ and

âout
κ are linked to the initial ones via the Bogoliubov transfor-

mation

âout
κ = α∗

κ â
in
κ − β∗

κ â†in
κ , (8)

with the (complex) Bogoliubov coefficients ακ and βκ . For the
initial ground state |�(tin)〉 = |0〉 in the κth radial mode, the
mean number of created phonons is given by〈

n̂out
κ

〉 = 〈�(tin)|â† out
κ âout

κ |�(tin)〉 = |βκ |2. (9)
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Hence, phonon creation takes place depending on the tem-
poral evolution of �κ (t ) from tin to tout, if |βκ | > 0. Or in
other words: The classical motion along the x axis induces
the creation of phonons in the radial direction.

The generators of the Bogoliubov transformation, (8), are
squeezing operators. Therefore the corresponding evolution of
the initial ground state |�(tin)〉 is given by

|�(tout)〉 = Ŝξκ
|0〉 = exp

{
1

2

∑
κ

ξκ

(
â†in

κ

)2 − H.c.

}
|0〉

= |0〉 + 1√
2

∑
κ

ξκ |2κ〉 + O
(
ξ 2
κ

)
, (10)

where the squeezing parameter ξκ is linked to the Bogoliubov
coefficients via |βκ | = sinh |ξκ | and arg ξκ = −(arg ακ +
arg βκ ). Formula (10) features the characteristics of a squeez-
ing operation, the creation of particles (here phonons) in pairs.

III. EXCITATION MODELS FOR TWO IONS

In the following we focus on the case of N = 2 ions
(see Fig. 2) and investigate the phonon creation induced by
different axial motions of the ions: first, by a collision between
the ions described by a scale function bcol(t ) and, second, by
an expansion of the ions corresponding to a scale function
bex(t ). The time dependence of the axial confinement neces-
sary to generate a given scale function b(t ) can be deduced
from (2) to

ωax(t ) =
√(

ωin
ax

)2

b3(t )
− b̈(t )

b(t )
. (11)

We focus here on trajectories where ωax(t ) ∈ R. However,
there exist also trajectories b(t ) that can only be realized
for temporarily negative ω2

ax, which means for temporarily
repulsive trapping potentials.

The scale function is linked to the (classical) mutual dis-
tance of the ions via

�x(t ) = x2(t ) − x1(t ) = b(t )�xeq. (12)

In the radial direction we have the two phonon modes

δŷ± = 1√
2

(δŷ1 ± δŷ2). (13)

This is the center-of-mass mode δŷ+ with frequency �2
+ =

ω2
rad and the rocking mode δŷ− with frequency �2

−(t ) =
ω2

rad − (ωin
ax)

2
/b(t )3. With (3) the equation of motion for the

rocking-mode phonons is(
d2

dt2
+ �2

−(t )

)
δŷ− = 0. (14)

A. Collision model

We consider now a special scale function

bcol(t ) =
(

1 + ��2
col(

ωin
ax

)2

1

cosh2(ωcolt )

)− 1
3

(15)

that parametrizes a collision between the ions. Starting at
tin → −∞ in the equilibrium position with bcol(tin) = 1, the

ions approach each other, reach for t = 0 a minimal axial
distance �xmin at the turning point, and, finally, return to their
initial positions for tout → +∞ with b(tout) = 1. The parame-
ter ��2

col describes the change in the rocking-mode frequency
�2

− from tin to t = 0 and determines the minimal distance of
the ions. The parameter ωcol determines the characteristic time
scale of the collision.

This process is analogous to the sequence in
Figs. 1(a)–1(c). Initially the ions can be far apart, such
that there is no Coulomb coupling and no entanglement
[Fig. 1(a)]. Around t = 0 the ions come very close and
interact strongly [Fig. 1(b)]. Figuratively, this collision
corresponds to an installation and a removal of the spring. If
this happens sufficiently rapidly, the ions remain entangled
even at large separations [Fig. 1(c)]. Using bcol(t ) from
Eq. (15) the differential Eq. (14) can be solved in terms
of hypergeometric functions whose asymptotic behavior is
known for t → ±∞. As shown in Appendix A this yields the
Bogoliubov coefficient,

|βcol
− |2 =

∣∣∣∣∣∣∣∣∣
cosh

(
π
2

√
4��2

col

ω2
col

− 1

)
sinh

(
π�in
ωcol

)
∣∣∣∣∣∣∣∣∣

2

, (16)

where �in = �−(tin). Here we focus on a regime of moderate
and slow collisions, where ωcol 
 ��col < �in. Especially,
this implies that the system never reaches critical points with
�− = 0, where the classical radial motion becomes unstable
and the linear chain features a phase transition into a two-
dimensional zigzag structure [27]. Under these assumptions,
Eq. (16) can be approximated as

|βcol
− |2 ≈ exp

[
−2π

(�in − ��col )

ωcol

]
. (17)

That means that particle creation becomes important only if
�in − ��col is chosen sufficiently small,

�in − ��col = O(ωcol ), (18)

while it is exponentially suppressed for �in − ��col � ωcol.
In fact, this statement is valid for generic scale functions, as
long as the collision fulfills the given assumptions.

Assuming that �2
−(t ) is sufficiently slowly varying (such

that a WKB approximation can be applied) and can be ap-
proximated by a parabola near its minimum (i.e., the turning
point at t = 0), we find that the mean number of phonons is
mainly dominated by the relation between two parameters: the
normal-mode frequency �2

−(0) and its curvature d2

dt2 �
2
−(0),

both evaluated at the turning point t = 0; see Appendix B.
As �2

−(t ) is linked to the ion trajectories via (4) and (1) it is
equivalent to state that the mean number of phonons after the
collision is mainly dominated by the two parameters

p1 :=
(

�xeq

�xmin

)3

(19)

and

p2 :=
(

ωax(t = 0)

ωin
ax

)2

, (20)

where ωax(t = 0) describes the axial confinement at the in-
stance when the ions reach their turning point. For example,

033407-3



CHRISTIAN FEY, TOBIAS SCHAETZ, AND RALF SCHÜTZHOLD PHYSICAL REVIEW A 98, 033407 (2018)

FIG. 3. Example of a time-dependent axial confinement char-
acterized by ωax(t ) that leads to the classical motion illustrated in
Fig. 4.

a model collision with trajectory bcol(t ) defined in Eq. (15),
yielding the two values p1 and p2, is obtained by choosing

��2
col(p1) = (

ωin
ax

)2
(p1 − 1) (21)

and

ω2
col(p1, p2) = (

ωin
ax

)2 3p1(p1 − p2)

2(p1 − 1)
. (22)

We can take advantage of this to obtain approximations for
the Bogoliubov coefficients β− of moderate and slow col-
lisions with trajectories qualitatively similar to (15). Such a
collision with given parameters p1 and p2 will lead to similar
phonon excitations as model collisions, (15), having identical
parameters. Therefore the Bogoliubov coefficient |β−|2 can be
approximated as

|β−|2 ≈ |βcol
− (p1, p2)|2, (23)

where βcol
− (p1, p2) denotes βcol

− from (16) with the substitu-
tions (21) and (22).

Let us exploit these results to propose a realistic imple-
mentation: a collision of two 25Mg+ ions trapped in a radial
potential with frequency ωrad = 2π × 3.5 MHz and an initial
axial potential with frequency ωin

ax = 2π×0.2 MHz. The ini-
tial equilibrium distance is �xeq ≈ 19.1 μm. As an example
we consider the axial confinement presented in Fig. 3, where
we increase ωax(t ) in approximately 0.5 μs from ωin

ax to
ωmax

ax = 2π×0.7 MHz, keep it constant for around 0.5 μs and
return, finally, to ωin

ax. In Fig. 4 the resulting ion trajectory is
illustrated. The exact Bogoliubov coefficient can be evaluated
either numerically to |β−|2 ≈ 0.18 or approximately, based on
(23), to |β−|2 ≈ 0.2. A more extensive comparison between
approximation (23) and the exact numerical results can be
carried out by calculating the Bogoliubov coefficients for
different final confinements ωmax

ax by both methods. The result
is illustrated in Fig. 5 and indicates that we achieve a good
agreement over several orders of magnitude.

Furthermore, this realistic result permits us to predict that
the mean phonon numbers created in the radial mode can be
five times larger than the residual thermal excitation of nth ≈
0.05, achievable by current cooling techniques. In addition,
the characteristic phonon distribution of the squeezed state

FIG. 4. Numerically calculated trajectory �x for two ions con-
fined in the axial potential with frequency ωax(t ) presented in Fig. 3.
After the collision the ions oscillate relative to their initial equilib-
rium positions. The dashed red line shows the critical distance at
which �− = 0, where the ion chain becomes instable.

allows us to clearly distinguish the pairwise created phonons
from the thermal background. Therefore we conclude that
effects analogous to cosmological particle creation should be
observable in already state-of-the-art ion traps [28,29].

So far we have only treated collisions of two ions. How-
ever, collisions of the form of (15) permit also exact analytical
expressions for the Bogoliubov coefficients of higher normal
modes. In the limit of slow and moderate collisions they can
be approximated by

|βκ |2 ∝ exp

⎡
⎣−2π

√
ω2

rad − ω2
κ − ��col

ωκ

ωin
ax

ωcol

⎤
⎦. (24)

Consequently, particle creation in the κth normal mode be-
comes important only if(√

ω2
rad − ω2

κ − ��col
ωκ

ωin
ax

)
= O(ωcol ). (25)

For an increasing ��col, considerable creation of pairs of
phonons occurs therefore first in the mode with the highest
ωκ . For large N in a linear chain of ions, this mode is called
the zigzag mode.

FIG. 5. Bogoliubov coefficient β− obtained (crosses) numeri-
cally or (asterisks) based on Eq. (23) for collisions induced by an
axial potential as presented in Fig. 3, where the peak confinement
ωmax

ax is varied.
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B. Expansion model

Another type of axial motion, which corresponds to an
expansion of the mutual distance of the ions, is described by
the scale function

bex(t ) =
(

1 − ��2
ex

2
(
ωin

ax

)2 (tanh(ωext ) + 1)

)− 1
3

. (26)

The parameter ��2
ex describes the induced jump in the

normal-mode frequency �2
−(t ), whereas ωex determines how

fast the expansion evolves. Inserting bex(t ) into (14) yields
a differential equation that is discussed in [3] as an example
of cosmological particle creation. It can be solved in terms
of hypergeometric functions whose asymptotic behavior is
known for t → ±∞. The Bogoliubov coefficient reads

|βex
− |2 = sinh2

(
π
2

�out−�in
ωex

)
sinh

(
π �in

ωex

)
sinh

(
π �out

ωex

) , (27)

where

�out =
√

�2
in + ��2

ex. (28)

For example, for very large ωex, this means that for a sudden
quench, the Bogoliubov coefficient can be approximated to

∣∣β2
ex

∣∣ ≈ (�out − �in)2

4�in�out
. (29)

However, in the case of moderate and slow expansions, i.e.,
ωex 
 �in the Bogoliubov coefficients become

|βex|2 ∝ e−2π�in/ωex . (30)

IV. ION-ION ENTANGLEMENT

After having discussed the excitation process of pairs of
phonons in the last section, we now analyze the conditions
for reaching entanglement between the ions and how robust
this entanglement is against thermal disturbances. We discuss
exclusively the case of N = 2 ions.

We consider a system that is initially in a thermal state
with sufficiently separated ions to consider them initially
uncoupled, i.e., �−(tin) = ωrad. In this case the operators δ̂y±
and δ̂y1/2 form two equivalent sets of normal modes and their
corresponding initial creation and annihilation operators are
linked via

âin
+ = 1√

2

(
âin

1 + âin
2

)
(31)

and

âin
− = 1√

2

(
âin

1 − âin
2

)
. (32)

Next the system becomes squeezed, for example, by an ion
collision as discussed in Sec. III. Finally, the ions return to
their initial positions, such that the coupling vanishes again.

First, we focus on a small squeezing parameter ξ and small
thermal excitations within the radial mode

nth = 〈n̂1 + n̂2〉 = 2〈n̂1〉 = 2〈n̂2〉 = 2 coth

(
h̄ωrad

2kBT

)
. (33)

Here T is the (initial) temperature and kB is the Boltzmann
constant. We do not consider effects of thermal excitations in
the axial modes because there is no coupling between axial
and radial normal modes; see Eq. (3). The initial density
operator can then be written as

ρ̂ in
th = (1 − nth)|0〉1|0〉2〈0|1〈0|2

+ nth

2
|1〉1|0〉2〈1|1〈0|2 + nth

2
|0〉1|1〉2〈0|1〈1|2

+O
(
n2

th

)
. (34)

After the squeezing process described by the operator Ŝξ− in
Eq. (10), the final density operator reads

ρ̂out
th = Ŝξ− ρ̂ in

th Ŝ
†
ξ− . (35)

The partially transposed matrix of ρ̂out
th possesses the eigen-

values nth ± |ξ−| and consequently becomes negative definite
for sufficiently large |ξ−|. With the Peres-Horodecki criterion
[30], which is a sufficient separability criterion for Gaussian
states [31], it follows that the ions are entangled if and only if
|ξ−| > nth.

The former result was obtained by assuming small pa-
rameters |ξ−| and nth. However, for Gaussian states such as
thermal states and squeezed thermal states (which we consider
in our scenario), it is also possible to evaluate the Peres-
Horodecki criterion for finite parameters ξ− and nth. This
was demonstrated in [32,33] and recently applied to analog
gravity experiments in [34]. In Appendix C we adapt the
formalism to our system and conclude that an initial thermal
state with thermal excitations n+ and n− in the δŷ± normal
modes becomes entangled during a squeezing process in the
δŷ− mode if and only if the so-called symplectic eigenvalue

λPT
− = 1

2

√
1 + 2n−

√
1 + 2n+e−|ξ−| (36)

satisfies λPT
− < 1/2. As expected, in the limit of small squeez-

ing parameters and small thermal excitations 2n+ = 2n− =
nth, this result coincides with the former entanglement cri-
terion |ξ−| > nth. To exemplify, we consider the collision
between two ions which is depicted in Fig. 4. The associated
Bogoliubov coefficient was determined in Sec. III as |β−|2 ≈
0.18, which is equivalent to a squeezing parameter of |ξ−| =
arsinh(|β−|) ≈ 0.41. Consequently, based on the symplectic
eigenvalue in Eq. (36), such a squeezing is strong enough to
entangle two ions in a thermal state with nth < 0.5. This upper
bound is much larger than currently achievable, nth ≈ 0.05.
Furthermore, as outlined in Appendix C, the here considered
squeezing is symmetric and one can infer from λPT

− also the
strength of the entanglement by evaluating the entanglement
of formation EF [33]. For the particular example nth ≈ 0.05
and |ξ−| ≈ 0.41 we obtain EF ≈ 0.15. This can be compared
to a maximally entangled pair of qubits having EF = 1 and a
nonentangled state having EF = 0 [35].

V. CONCLUSIONS

We have considered the radial modes of two or more ions in
a trap which we accelerate in the axial direction. The shaping
of the axial motion permits us to control the time-dependent
coupling between the radial fluctuations and to create an
characteristic excitation in these modes.
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An advantage of this setup in comparison to previous
proposals lies in exploiting axial and radial motion. This
allows us to derive realistic parameters to enable the detection
of phonon pair creation and entanglement. Furthermore, we
predict for Gaussian states that the entanglement can be
quantified experimentally by comparing correlations between
pairs of ions to the thermal fluctuations of the individual ions.
The process of phonon pair creation has been predicted to
emerge in an analogous way in cosmological particle creation.
It also displays similarities to black-hole evaporation, where
the entanglement between the partners is often discussed in
connection with the entropy of the black hole.
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APPENDIX A: BOGOLIUBOV COEFFICIENTS

The solutions of the rocking-mode differential equation
(14), for the collision model (15), are the associated Legendre
polynomials P ν

μ (z) with the substitutions

z = tanh(−ωcolt ),

ν = i
�in

ωcol
,

μ = 1

2

(
i

√
4��2

col

/
ω2

col − 1 − 1
)
. (A1)

Their asymptotic behavior is

P ν
μ (tanh(−ωcolt ))

t→−∞−→ e−i�int

�(1 − ν)
(A2)

and

P ν
μ (tanh(−ωcolt ))

t→∞−→ �(−ν)

�(−ν − μ)�(1 + μ − ν)
e−i�int

− sin(πμ)�(ν)

π
ei�int . (A3)

Hence, initial solutions with exponents −i�int evolve into a
mixture of solutions with positive and negative frequencies.
The Bogoliubov coefficient βcol

− describes the conversion ratio
of this process and is given by

|βcol
− |2 =

∣∣∣∣ sin(πμ)�(ν)�(1 − ν)

π

∣∣∣∣
2

=
∣∣∣∣ sin(πμ)

sin(πν)

∣∣∣∣
2

. (A4)

Back substitution yields, finally,

|βcol
− |2 =

∣∣∣∣∣∣∣∣∣
cosh

(
π
2

√
4��2

col

ω2
col

− 1

)
sinh

(
π�in
ωcol

)
∣∣∣∣∣∣∣∣∣

2

. (A5)

APPENDIX B: WKB APPROXIMATION

We derive here the general exponential behavior of the
Bogoliubov coefficients for slow and moderate collisions in

a normal mode with frequency �2(t ). Moderate means that
we stay away from the critical point, i.e.,

�2(t ) > 0, (B1)

while slow means that ∣∣∣∣ �̇(t )

�2(t )

∣∣∣∣ 
 1. (B2)

For a typical collision �2(t ) reaches its minimum when the
ions are closest and the scale function becomes minimal.
Without loss of generality this happens at t = 0. As shown
in [36], under these conditions a WKB approximation yields
the exponential behavior of the Bogoliubov coefficient as

|β|2 ∝ exp

[
−4Im

{∫ t∗

0
�(t )dt

}]
, (B3)

where t∗ denotes the root of �(t ) in the upper complex plane.
Phonon creation happens more likely when the exponent is
small. This can be achieved by working with low frequencies
�(t ) and small values for t∗.

Next, we calculate the exponent explicitly for collisions
that are well described by a Taylor expansion

�2(t ) ≈ �2
min + 1

2K2t2 (B4)

in the region |t | < |t∗|, where

K2 = d2

dt2
�2(t )

∣∣∣∣
t=0

(B5)

is the curvature. Their complex root is approximated by

t∗ ≈ i
√

2
�min

K
. (B6)

Finally, evaluating (B3) leads to

|β|2 ∝ exp

[
−

√
2π

�2
min

K

]
. (B7)

For the model collision with bcol(t ) in (15), this yields the
exponential behavior

|βcol
− |2 ∝ exp

[
−2π

(�in − ��col )

ωcol

]
, (B8)

in agreement with (17).

APPENDIX C: COVARIANCE MATRIX FORMALISM

To apply the entanglement criteria for Gaussian states
developed in [32–34] to our system we define the phase-space
vector with respect to the ion coordinates

R̂12 = (
δŷ1 δ ˙̂y1 δŷ2 δ ˙̂y2

)T
. (C1)

The corresponding covariance matrix reads

σkl := 1
2 〈R̂kR̂l + R̂lR̂k〉. (C2)

We also define the phase-space vector with respect to the
normal coordinates

R̂nor = (
δŷ+ δp̂+ δŷ− δp̂−

)T = D · R̂12, (C3)

033407-6



ION-TRAP ANALOG OF PARTICLE CREATION IN COSMOLOGY PHYSICAL REVIEW A 98, 033407 (2018)

with the transformation matrix

D = 1√
2

⎛
⎜⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞
⎟⎠, (C4)

which satisfies D = DT = D−1. The covariance matrices
corresponding either to R̂12 or to R̂nor are linked via

σ 12 = D · σ nor · D. (C5)

We consider an initial thermal covariance matrix

σ in
nor = 1

2

⎛
⎜⎜⎜⎝

1 + 2n+ 0 0 0

0 1 + 2n+ 0 0

0 0 1 + 2n− 0

0 0 0 1 + 2n−

⎞
⎟⎟⎟⎠
(C6)

with the thermal occupation numbers

n± = coth

(
h̄�±
2kBT

)
. (C7)

Its time evolution during a squeezing process is

σ out
nor = S · σ in

nor · ST , (C8)

where S is the symplectic matrix

S =

⎛
⎜⎜⎜⎝

Re{α+} Im{α+} 0 0

−Im{α+} Re{α+} 0 0

0 0 Re{α− − β−} Im{α− + β−}
0 0 −Im{α− − β−} Re{α− + β−}

⎞
⎟⎟⎟⎠
(C9)

containing the Bogoliubov coefficients for the δŷ− and
the δŷ+ mode. Here we consider only squeezing of the

δŷ− mode, i.e., |α+| = 1. For the time evolution of σ 12 this
implies

σ out
12 = D · S · D · σ in

12 · D · ST · D. (C10)

As shown in [32], for Gaussian states the Peres-Horodecki cri-
terion can be formulated as a criterion on the two symplectic
eigenvalues λ± of the partial transposed convariance matrix(

σ out
12

)PT = T · σ out
12 · T (C11)

with T = diag(1,−1, 1, 1). The ions are entangled if one of
the symplectic eigenvalues is smaller than 1/2.

For our system we obtain the symplectic eigenvalues as the
two positive eigenvalues of i J · (σ out

12 )PT to

λPT
± = 1

2

√
1 + 2n−

√
1 + 2n+(|α−| ± |β−|)

= 1
2

√
1 + 2n−

√
1 + 2n+ e±|ξ−|, (C12)

where

J =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎠. (C13)

Therefore the ions are entangled if
√

1 + 2n−
√

1 + 2n+
exp (−|ξ−|) < 1.

Furthermore, in the case of symmetric squeezing, the en-
tanglement of formation EF can be evaluated explicitly [33].
Squeezing is called symmetric when the two 2×2 matrices on
the diagonal of σ out

12 possess identical determinants, which is
the case here. The entanglement of formation is then

EF =
{

f (λPT
− ) if 0 < λPT

− < 1
2 ,

0 if 1
2 � λPT

− ,
(C14)

with the function

f (x)=
(

1
2 + x

)2

2x
ln

((
1
2 + x

)2

2x

)
−

(
1
2 − x

)2

2x
ln

((
1
2 − x

)2

2x

)
.

(C15)
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